support this site

Showing posts with label composite hydrogel drug delivery. Show all posts
Showing posts with label composite hydrogel drug delivery. Show all posts

Friday, January 18, 2008

Magnetic Nanoparticles could be used to control uptake of drugs by cell receptors

For the first time, researchers have demonstrated a means of controlling cell functions with a physical, rather than chemical, signal. Immune cells coated with nanoparticles take up calcium in the presence of a magnetic field. Each nanoparticle measures approximately 30 nanometers in diameter.

In this image, yellow cells are taking up calcium in response to a localized magnetic field. Cells that are farther away from the field are shown in purple and do not take up calcium. Credit: Donald Ingber, Harvard Medical School


Using a magnetic field to pull together tiny beads targeted to particular cell receptors, Harvard researchers made cells take up calcium, and then stop, then take it up again.

This is another important step to cellular and molecular control to enable nanomedicine

Ingber's group demonstrated its method for biomagnetic control using a type of immune-system cell that mediates allergic reactions.
Targeted nanoparticles with iron oxide cores were used to mimic antigens in vitro. Each is attached to a molecule that in turn can attach to a single receptor on an immune cell. When Ingber exposes cells bound with these particles to a weak magnetic field, the nanoparticles become magnetic and draw together, pulling the attached cell receptors into clusters. This causes the cells to take in calcium. (In the body, this would initiate a chain of events that leads the cells to release histamine.) When the magnetic field is turned off, the particles are no longer attracted to each other, the receptors move apart, and the influx of calcium stops.

"It's not the chemistry; it's the proximity" that activates such receptors, says Ingber.

The approach could have a far-reaching impact, as many important cell receptors are activated in a similar way and might be controlled using Ingber's method.

"In recent years, there has been a realization that physical events, not just chemical events, are important" to cell function, says Shu Chien, a bioengineer at the University of California, San Diego. Researchers have probed the effects of physical forces on cells by, for example, squishing them between plates or pulling probes across their surfaces. But none of these techniques work at as fine a level of control as Ingber's magnetic beads, which act on single biomolecules.

Many drugs, from anticancer antibodies to hormones, work by activating cell receptors. Once a hormone is in the blood, however, there's no turning it on or off. "This shows that you can turn on and off the signal, and that you can do it instantly," says Christopher Chen, a bioengineer at the University of Pennsylvania. "That's something that's hard to do, for example, with an antibody."

Ingber has many ideas for devices that might integrate his method of cellular control. Magnetic pacemakers could use cells instead of electrodes to send electrical pulses to the heart. Implantable drug factories might contain many groups of cells, each of which makes a different drug when activated by a magnetic signal. Biomagnetic control might lead to computers that can take advantage of cells' processing power. "Cells do complex things like image processing so much better than computers," says Ingber. Ingber, who began the project in response to a call by the Defense Advanced Research Projects Agency for new cell-machine interfaces, acknowledges that his work is in its early stages. In fifty years, however, he expects that there will be devices that "seamlessly interface between living cells and machines."


FURTHER READING
Harvard Institute for Biologically Inspired Engineering.

Thursday, September 20, 2007

Launching nanoparticle drug delivery site

Here is the start of my site devoted to nanoparticle drug delivery. I am providing it as a service so that fewer people will need to buy overpriced market reports on the same subject. I will also launch several other sites on near term nanotechnology subjects. My main website on future technology with a significant focus on advanced nanotechnology is advancednano

The Drug delivery is a multi-billion dollar business. Some calculate it as a 9.8 billion business. Led by the strong growth of biotechnology drugs requiring novel delivery technologies, the injectable/implantable drug delivery market reached revenues of $9.8 billion in 2006

Nanotechnology in drug delivery

A drug delivery website

Drug delivery stocks

The 9th annual drug delivery symposium coming Dec 16-20, 2007 is only about $600 versus $5000 or more for some market reports

Advance Nanotech Singapore Pte. Ltd. owns 75% of Nano Solutions Limited (Imperial College, London) which is developing Nanovindex. Nanovindex is a nanoparticle-hydrogel composites for drug delivery.

From 2005, 10Q
Nanotechnologies have already begun to change the scale and methods of drug delivery and hold huge potential for future developments in this area. Nanotechnology can provide new formulations and routes for drug delivery that broaden their therapeutic potential enormously by allowing the delivery of new types of medicine to previously inaccessible sites in the body. Novel composites incorporating nanoparticles are particularly exciting for these applications. A key to gaining competitiveness within the market is to develop next generation composites which are extremely sensitive to a variety of environmental stimuli. NanoVindex aims to achieve this by utilising expertise in rational peptide design to incorporate specific pH, enzymes and temperature triggers within the composites enabling a new level of control over the release of encapsulated drugs.

Technology

NanoVindex is seeking to develop a platform technology of nanoparticle-hydrogel composites for tailored drug delivery applications. The development shall leverage the research of Imperial College London in rational design of self-assembling peptide systems, control over the nanoscale organic/inorganic interface, and physiologically responsive bio-nano materials. Revenues to drug delivery companies were $1.3bn in 2002 and projected to increase to $6.7bn by 2012. With the focus evermore on emerging nanotechnologies and the improvements these may offer over more conventional systems, the market for new nanotechnologies in drug delivery is poised to be a multi-billion dollar arena. These technologies have the potential to revolutionise the pharmaceutical industry.


FURTHER READING
Abstract on Hydrogel-Nanofiber Composite Systems For Drug Delivery

2003 patent, Composite hydrogel drug delivery systems

google search of hydrgel composites drug delivery

Google search on nanoparticle drug delivery

Other drug delivery market studies by Kalorama