support this site

Friday, January 18, 2008

Magnetic Nanoparticles could be used to control uptake of drugs by cell receptors

For the first time, researchers have demonstrated a means of controlling cell functions with a physical, rather than chemical, signal. Immune cells coated with nanoparticles take up calcium in the presence of a magnetic field. Each nanoparticle measures approximately 30 nanometers in diameter.

In this image, yellow cells are taking up calcium in response to a localized magnetic field. Cells that are farther away from the field are shown in purple and do not take up calcium. Credit: Donald Ingber, Harvard Medical School


Using a magnetic field to pull together tiny beads targeted to particular cell receptors, Harvard researchers made cells take up calcium, and then stop, then take it up again.

This is another important step to cellular and molecular control to enable nanomedicine

Ingber's group demonstrated its method for biomagnetic control using a type of immune-system cell that mediates allergic reactions.
Targeted nanoparticles with iron oxide cores were used to mimic antigens in vitro. Each is attached to a molecule that in turn can attach to a single receptor on an immune cell. When Ingber exposes cells bound with these particles to a weak magnetic field, the nanoparticles become magnetic and draw together, pulling the attached cell receptors into clusters. This causes the cells to take in calcium. (In the body, this would initiate a chain of events that leads the cells to release histamine.) When the magnetic field is turned off, the particles are no longer attracted to each other, the receptors move apart, and the influx of calcium stops.

"It's not the chemistry; it's the proximity" that activates such receptors, says Ingber.

The approach could have a far-reaching impact, as many important cell receptors are activated in a similar way and might be controlled using Ingber's method.

"In recent years, there has been a realization that physical events, not just chemical events, are important" to cell function, says Shu Chien, a bioengineer at the University of California, San Diego. Researchers have probed the effects of physical forces on cells by, for example, squishing them between plates or pulling probes across their surfaces. But none of these techniques work at as fine a level of control as Ingber's magnetic beads, which act on single biomolecules.

Many drugs, from anticancer antibodies to hormones, work by activating cell receptors. Once a hormone is in the blood, however, there's no turning it on or off. "This shows that you can turn on and off the signal, and that you can do it instantly," says Christopher Chen, a bioengineer at the University of Pennsylvania. "That's something that's hard to do, for example, with an antibody."

Ingber has many ideas for devices that might integrate his method of cellular control. Magnetic pacemakers could use cells instead of electrodes to send electrical pulses to the heart. Implantable drug factories might contain many groups of cells, each of which makes a different drug when activated by a magnetic signal. Biomagnetic control might lead to computers that can take advantage of cells' processing power. "Cells do complex things like image processing so much better than computers," says Ingber. Ingber, who began the project in response to a call by the Defense Advanced Research Projects Agency for new cell-machine interfaces, acknowledges that his work is in its early stages. In fifty years, however, he expects that there will be devices that "seamlessly interface between living cells and machines."


FURTHER READING
Harvard Institute for Biologically Inspired Engineering.

Monday, December 10, 2007

Nanorobot drug delivery

Adriano Cavalcanti is CEO and chairman of CAN Center for Automation in Nanobiotech. Adriano and his coleagues have proposed a nanorobot platform should enable patient pervasive monitoring, and details are given in prognosis with nanorobots application for intracranial treatments. This integrated system also points towards precise diagnosis and smart drug delivery for cancer therapy.


nanorobot for nanomedicine drug delivery


Simulated nanorobot for drug delivery

Fully operational nanorobots for biomedical instrumentation should be achieved as a result of nanobioelectronics and proteomics integration. The proposed platform should enable patient pervasive monitoring, and details are given in prognosis with nanorobots application for intracranial treatments. This integrated system also points towards precise diagnosis and smart drug delivery for cancer therapy.

The methodologies and the implemented 3D simulation described in our study served as a test bed for molecular machine prototyping. The numerical analysis and advanced simulations provided a better understanding on how nanorobots should interact inside the human body. Hence, based on such information, we have proposed the innovative hardware architecture with a nanorobot model for use in common medical applications. The nanorobot takes chemical and thermal gradient changes as interaction choices for in vivo treatments. The use of mobile phones with RF is adopted in this platform as the most effective approach for control upload, helping to interface nanorobots communication and energy supply.

The next steps in our work can be defined as follows: (a) model manufacturing with CNT-CMOS biochip integration; (b) laboratory studies for in vivo tests; and (c) commercialization. The pipeline for development in the medical sector typically requires research and efforts to get new ideas out of laboratories and into the marketplace


FURTHER READING
Nanorobot design website

They have written many papers on this work. Robert Freitas is involved in some of them.

Nanorobot architecture for medical target identification.

The nanorobot interaction with the described workspace shows how time actuation is improved based on sensor capabilities. Therefore, our work addresses the control and the architecture design for developing practical molecular machines. Advances in nanotechnology are enabling manufacturing nanosensors and actuators through nanobioelectronics and biologically inspired devices. Analysis of integrated system modeling is one important aspect for supporting nanotechnology in the fast development towards one of the most challenging new fields of science: molecular machines. The use of 3D simulation can provide interactive tools for addressing nanorobot choices on sensing, hardware architecture design, manufacturing approaches, and control methodology investigation.


Earlier work was with CMOS versions of small robots

Hardware architecture for nanorobots

Freitas' nanomedicine site

Center for Automation in Nanobiotech website

Saturday, November 24, 2007

Remote-control nanoparticles deliver drugs directly into tumors

MIT scientists have devised remotely controlled nanoparticles that, when pulsed with an electromagnetic field, release drugs to attack tumors.


Here, dark gray nanoparticles carry different drug payloads (one red, one green). A remotely generated five-minute pulse of a low-energy electromagnetic field releases the green drug but not the red. A five-minute pulse of a higher-energy electromagnetic field releases the red drug, which had been tethered using a DNA strand twice as long as the green tether, as measured in base pairs. Image courtesy / Bhatia/von Maltzahn, MIT. Derfus, UCSD

Monday, November 12, 2007

Toward cancer drugs that penetrate 10 times deeper into the brain

A new drug-delivery system for cancer of the brain — one of the most difficult cancers to treat — has the potential to carry anticancer drugs 10 times deeper into tumors than conventional medications, researchers in Connecticut and New York report.

In the new study, Mark Saltzman and colleagues showed that linking the anticancer drug campothecin (CPT) to the polymer polyethylene glycol (PEG), increased drug diffusion to more than a centimeter from the implant site.

They also identified a promising CPT-PET compound that could deliver 11 times more medication to the tumor than the plain drug alone. For patients, those advantages could substantially improve chances for successful treatment, the researchers indicate.

Tuesday, October 16, 2007

Laser activate Gold nanorods trigger complex biochemical mechanism to kill cancer

Researchers have shown how tiny "nanorods" of gold can be triggered by a laser beam to blast holes in the membranes of tumor cells, setting in motion a complex biochemical mechanism that leads to a tumor cell's self-destruction.

The gold rods are less than 15 nanometers wide and 50 nanometers long, or roughly 200 times smaller than a red blood cell. Their small size is critical for the technology's potential medical applications: the human immune system quickly clears away particles larger than 100 nanometers, whereas smaller nanoparticles can remain in the bloodstream far longer.

Shining light on the gold nanorods causes them to become extremely hot, ionizing the molecules around them.

"This generates a plasma bubble that lasts for about a microsecond, in a process known as cavitation," Wei said. "Every cavitation event is like a tiny bomb. Then suddenly, you have a gaping hole where the nanorod was."

The gold nanorods also are ideal for a type of optical imaging known as two-photon luminescence, used by Cheng and his research group to monitor the position of nanorods in real time during tumor-cell targeting. The imaging technique provides higher contrast and brighter images than conventional fluorescent imaging methods.

The findings suggest an optimal window of opportunity for applying near-infrared light to the nanorods for cancer treatment.

"We like to believe this opens the possibility of using nanorods for biomedical imaging as well as for therapeutic purposes," Cheng said.

The Purdue researchers observed that light-absorbing nanorods cause the formation of membrane "blebs, " similar to severe blistering. These blisters, however, are not produced directly by the high heat generated by the nanorods.

"The blebbing is triggered by the nanorods, but it's really caused through a complex biochemical pathway - a chemically induced process," Cheng said. "Extra calcium gets into the cell and triggers enzyme activity, which causes the infrastructure inside the cell to become loose, and that gives rise to the membrane blebs."

Researchers used a calcium-sensitive fluorescent dye to back up their argument that calcium influx caused the tumor cell death. When the nanorod-bearing tumor cells were maintained in a calcium-free nutrient medium, no blisters were formed if the nanorods were exposed to near-infrared light. But when the researchers added calcium to the medium, the blebbing took place immediately.

Although the technique offers promise for a new cancer treatment, it is too early to determine when it could be in clinical use, said Wei, who is collaborating with the National Cancer Institute to determine the suitability of the functionalized gold nanorods for future clinical studies.

Friday, October 12, 2007

Nanodiamonds delivery chemotherapy drugs without negative side effects

Northwestern University researchers have shown that nanodiamonds -- much like the carbon structure as that of a sparkling 14 karat diamond but on a much smaller scale -- are very effective at delivering chemotherapy drugs to cells without the negative effects associated with current drug delivery agents.

Their study, published online by the journal Nano Letters, is the first to demonstrate the use of nanodiamonds, a new class of nanomaterials, in biomedicine. In addition to delivering cancer drugs, the model could be used for other applications, such as fighting tuberculosis or viral infections, say the researchers.

Nanodiamonds promise to play a significant role in improving cancer treatment by limiting uncontrolled exposure of toxic drugs to the body. The research team reports that aggregated clusters of nanodiamonds were shown to be ideal for carrying a chemotherapy drug and shielding it from normal cells so as not to kill them, releasing the drug slowly only after it reached its cellular target.

To make the material effective, Ho and his colleagues manipulated single nanodiamonds, each only two nanometers in diameter, to form aggregated clusters of nanodiamonds, ranging from 50 to 100 nanometers in diameter. The drug, loaded onto the surface of the individual diamonds, is not active when the nanodiamonds are aggregated; it only becomes active when the cluster reaches its target, breaks apart and slowly releases the drug. (With a diameter of two to eight nanometers, hundreds of thousands of diamonds could fit onto the head of a pin.)

“The nanodiamond cluster provides a powerful release in a localized place -- an effective but less toxic delivery method,” said co-author Eric Pierstorff, a molecular biologist and post-doctoral fellow in Ho’s research group. Because of the large amount of available surface area, the clusters can carry a large amount of drug, nearly five times the amount of drug carried by conventional materials.

Liposomes and polymersomes, both spherical nanoparticles, currently are used for drug delivery. While effective, they are essentially hollow spheres loaded with an active drug ready to kill any cells, even healthy cells that are encountered as they travel to their target. Liposomes and polymersomes also are very large, about 100 times the size of nanodiamonds -- SUVs compared to the nimble nanodiamond clusters that can circulate throughout the body and penetrate cell membranes more easily.

Unlike many of the emerging nanoparticles, nanodiamonds are soluble in water, making them clinically important. “Five years ago while working in Japan, I first encountered nanodiamonds and saw it was a very soluble material,” said materials scientist Houjin Huang, lead author of the paper and also a post-doctoral fellow in Ho’s group. “I thought nanodiamonds might be useful in electronics, but I didn’t find any applications. Then I moved to Northwestern to join Dean and his team because they are capable of engineering a broad range of devices and materials that interface well with biological tissue. Here I’ve focused on using nanodiamonds for biomedical applications, where we’ve found success.

“Nanodiamonds are very special,” said Huang. “They are extremely stable, and you can do a lot of chemistry on the surface, to further functionalize them for targeting purposes. In addition to functionality, they also offer safety -- the first priority to consider for clinical purposes. It’s very rare to have a nanomaterial that offers both.”

“It’s about optimizing the advantages of a material,” said Ho, a member of the Lurie Cancer Center. “Our team was the first to forge this area -- applying nanodiamonds to drug delivery. We’ve talked to a lot of clinicians and described nanodiamonds and what they can do. I ask, ‘Is that useful to you?’ They reply, ‘Yes, by all means.’”

For their study, Ho and his team used living murine macrophage cells, human colorectal carcinoma cells and doxorubicin hydrochloride, a widely used chemotherapy drug. The drug was successfully loaded onto the nanodiamond clusters, which efficiently ferried the drug inside the cells. Once inside, the clusters broke up and slowly released the drug.

In the genetic studies, the researchers exposed cells to the bare nanodiamonds (no drug was present) and analyzed three genes associated with inflammation and one gene for apoptosis, or cell death, to see how the cells reacted to the foreign material. Looking into the circuitry of the cell, they found no toxicity or inflammation long term and a lack of cell death. In fact, the cells grew well in the presence of the nanodiamond material.

Friday, October 5, 2007

Developing a modular, nanoparticle drug delivery system

There are two aspects to creating an effective drug: finding a chemical compound that has the desired biological effect and minimal side-effects and then delivering it to the right place in the body for it to do its job.

With the support from a $478,000, five-year CAREER award from the National Science Foundation, Eva Harth is tackling the second part of this problem. She is creating a modular, multi-functional drug delivery system that promises simultaneously to enhance the effectiveness and reduce undesirable side-effects of a number of different drugs.

Harth has taken a different approach from other researchers working on nanotechnology for drug development. Instead of trying to encapsulate drugs in nanoscale containers, she decided to create a nanoparticle that had a large number of surface sites where drug molecules could be attached. To do so, she adopted a method that uses extensive internal cross-linking to scrunch a long, linear molecule into a sphere about 10 nanometers in diameter, about the size of a protein. Nanoparticles like this are called nanosponges.

Hamm studies G proteins, arguably the most important signaling molecules in the cell. Scientists think that many diseases, including diabetes and certain forms of pituitary cancer, are caused by malfunctioning G proteins. She and Harth are collaborating on using the transporter to deliver peptides produced by G proteins that disrupt signaling pathways.

“Eva’s methods for drug delivery are very novel and versatile and can be adapted to delivery of proteins, peptides, DNA and smaller chemical compounds like most drugs. The breadth of applications makes her technology very powerful,” Hamm says.

She is now working with Hallahan to adapt her delivery system to carry cisplatinum, a traditional chemotherapy agent that is used to treat a number of different kinds of cancer but is highly toxic and has a number of unpleasant side effects.

By delivering the anti-cancer agent directly to the cancerous tissues, Eva’s system decreases the adverse effects on other tissues and increases its potency by delivering a higher concentration of the drug directly on the cancer, Hallahan explains.

“The people in my lab have tried at a number of different drug delivery systems and Eva’s works the best of those we’ve looked at,” Hallahan says.